Электрогравиметрию применяют для определения металлов, дающих плотные осадки на электроде, не осыпающиеся при промывании, высушивании и взвешивании. Кроме того, электрогравиметрию применяют только в тех случаях, когда осаждение определяемого металла не сопровождается соосаждением других металлов или примесей.
При электролизе катионы перемещаются к катоду, выделяясь на нем в виде металлов. Только очень немногие металлы осаждаются на аноде. К ним относятся, например, и , окисляющиеся в процессе электролиза до и .
Электроды, применяемые в электрогравиметрическом анализе, должны отвечать следующим требованиям:
1) быть химически инертными;
2) хорошо удерживать образующиеся осадки;
3) иметь возможно меньшую массу и возможно большую поверхность;
4) не препятствовать перемешиванию раствора.
Всем этим требованиям в наибольшей степени удовлетворяют платиновые сетчатые электроды. Анодом, в большинстве случаев, служит платиновая проволока, согнутая в спираль.
Для проведения электрогравиметрического анализа два платиновых электрода погружают в стакан с анализируемым раствором, подсоединяют электроды к внешнему источнику тока и проводят электролиз. При прохождении тока через раствор электролита происходят процессы восстановления и окисления соответствующих веществ на электродах. Связь между количествами веществ, участвующих в электродных процессах, и количеством электричества Q () через цепь за время электролиза t при токе I устанавливается двумя законами Фарадея:
Первый закон Фарадея: масса вещества, восстановленного на катоде или окисленного на аноде, пропорциональна количеству электричества, прошедшего через раствор или расплав.
Второй закон Фарадея: одно и то же количество электричества восстанавливает или окисляет на электродах массы различных веществ, прямо пропорциональные их химическим эквивалентам.
Количество электричества, расходуемое на выделение одного эквивалента, называют постоянной Фарадея и обозначают буквой F.(F= 96 487 Кл/моль).
Математически оба закона можно представить формулой:
,
где m(X) - масса вещества X, выделившегося при электролизе;
M(1/z X) и M(X) - молярная масса эквивалента и молярная масса вещества X, соответственно;
z - число эквивалентности;
F - число Фарадея, равное количеству электричества (96500 Кл), которое требуется для выделения 1 моль эквивалентов вещества.
В электрогравиметрических методах анализа кроме потенциала и силы тока важно контролировать ряд экспериментальных условий.
Неплатиновые электроды. Вследствие высокой стоимости платиновых электродов их заменяют танталовыми, вольфрамовыми, серебряными, никелевыми, графитовыми и другими. Можно применять катоды из нержавеющей стали и аноды из свинца, железа, никеля.
Напряжение. Практически напряжение при электролизе приходится поддерживать выше напряжения разложения. Избыточное напряжение, которое необходимо создать на данном электроде, чтобы нормально протекал электролиз, называют перенапряжением. Перенапряжение объясняется протеканием на поверхности электродов и в непосредственной близости к ним сложных физико-химических процессов.
Условия электролиза должны быть выбраны так, чтобы происходило выделение только одного металла, а не смеси каких – либо металлов.
При электроанализе большое значение имеет характер выделяющегося осадка. Для получения правильных результатов анализа осадки, выделенные в результате электролиза, должны удовлетворять следующим требованиям:
1. Осадок должен быть чистым и не содержать посторонних примесей. Наиболее чистыми осадками являются мелкокристаллические.
2. Осадок должен обладать хорошим сцеплением с поверхностью электрода. Если осадок плохо сцепляется с поверхностью электрода, то при последующей обработке, промывании, высушивании и взвешивании электрода часть осадка может быть потеряна и результаты анализа будут неточными.
3. Состав отложившегося на электроде вещества не должен изменяться под действием кислорода воздуха. При некоторых условиях электролиза (высокой плотности тока) получают мелкокристаллические, но пористые осадки с весьма развитой поверхностью. Такие осадки легко окисляются. Например, при электролитическом осаждении меди из аммиачных растворов при высокой плотности тока металл образует на поверхности катода губчатый порошкообразный осадок, легко окисляющийся на воздухе в процессе сушки. Результаты определения в этом случае получаются повышенными.
Получение и свойства амфифильных полимеров N-винилпирролидона
В качестве метода синтеза амфифильных производных поли-N-винилпирролидона, содержащих концевые гидрофобные группы, в данной работе использован двухстадийный подход, когда на первой стадии проводилась радикальная полимеризация соответствующих мономеров в присутствии инициаторов, генерирующих первичн ...
Метрологические и аналитические характеристики
Электрогравиметрию применяют для определения металлов, дающих плотные осадки на электроде, не осыпающиеся при промывании, высушивании и взвешивании. Кроме того, электрогравиметрию применяют только в тех случаях, когда осаждение определяемого металла не сопровождается соосаждением других металлов ил ...
Методы разрушения эмульсии
1. Эмульсии типа "м/в", полученные с применением ионогенных эмульгаторов, обычно разрушают с помощью коагуляции электролитами с поливалентными ионами. Вводя такие электролиты, переводят эмульгатор в неактивную форму, так как они дают нерастворимые в воде соединения с ионогенной группой эм ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.