Явление мицеллообразования представляет интерес для различных областей химии, таких как физическая химия, биохимия, химия полимеров. В частности, значительное внимание уделяется амфифильным полимерам различного строения, которые способны к самоорганизации в водных растворах, подобно низкомолекулярным поверхностно-активным веществам.
Способность к самоорганизации в полярных и неполярных средах с образованием различных агрегатов является важной характеристикой амфифильных полимеров. В водной среде амфифильные молекулы блоксополимеров типа АВ самоорганизуются с образованием мицелл.
Мицелла – устойчивое образование из определенного числа (например, нескольких десятков) молекул полимера, является простейшим агрегатом [1]. Мицеллы представляют собой образования, часто близкие к сферическим, в которых полярные группы контактируют с полярной средой (водой), а гидрофобные радикалы находятся внутри, образуя неполярное ядро.
Как и для низкомолекулярных биполярных молекул, появление агрегатов в растворах происходит выше некоторой концентрации, так называемой, критической концентрации мицеллообразования. Для водных растворов амфифильных блоксополимеров характерна аналогичная картина. Ниже критической концентрации мицеллообразования (ККМ) в растворе можно наблюдать отдельные молекулы полимера. При концентрации полимера в растворе, приближающейся к ККМ начинают образовываться мицеллы, которые находятся в термодинамическом равновесии с неассоциированными молекулами полимера. Величина ККМ зависит от целого ряда факторов: природы амфифильного полимера, длины и степени разветвления углеводородного радикала, присутствия электролитов или других органических соединений, рН раствора.
Однако основным фактором является соотношение между гидрофильными и гидрофобными свойствами полимера. Так, чем длиннее углеводородный радикал и слабее полярная группа, тем меньше величина ККМ (наиболее полно современные представления о термодинамике растворов ПАВ и процессах мицеллообразования освещены в монографии Русанова [14]).
При концентрациях ПАВ, превышающих ККМ, возможно образование нескольких типов мицелл (Рис. 3) и их агрегатов, различающихся по форме: сферические, цилиндрические, гексагонально упакованные, ламеллярные. Таким образом, мицеллы и их агрегаты можно рассматривать как одномерные, двумерные и объёмные нанообъекты.
Рис. 3. Структуры, возникающие в растворах ПАВ. 1 – мономеры, 2 – мицелла, 3 – цилиндрический агрегат мицелл, 4 – гексагонально упакованные цилиндрические агрегаты мицелл, 5 – ламинарный агрегат мицелл, 6 – гексагонально упакованные капли воды в обратной мицеллярной системе
Амфифильные полимеры с длинным углеводородным радикалом и слабой полярной группой могут растворяться в неполярных жидких фазах и практически не растворяться в воде. В этом случае при определённой концентрации полимера также наблюдается образование мицелл, которое обусловлено специфическими взаимодействиями между полярными группами амфифила. Такие мицеллы называют обратными. Форма обратных мицелл зависит от концентрации полимера и может быть различной.
Так как вода является термодинамически плохим растворителем для гидрофобной части макромолекулы, последняя образует ядро частицы, а оболочка состоит из гидрофильной части молекулы, которая также оказывает стабилизирующее влияние на систему. Триблок- и привитые сополимеры могут образовывать кроме приведенных на рис. 3 структур мицеллы со смешанной оболочкой (без разделения цепей), мицеллы с разделенной оболочкой (с боковым, радиальным разделением цепей), везикулы и др. [[8], [9]].
Для веществ, способных к самоорганизации в растворах, введен термин «число агрегации». Число агрегации может быть определено как число единичных молекул (макромолекул), объединяющихся в мицеллу. В зависимости от природы полимеров числа агрегации (n) могут изменяться от десятков до нескольких сотен, при этом будут меняться и размеры мицелл.
Термодинамические аспекты самоорганизации амфифильных полимеров, в принципе, абсолютно схожи с такими же процессами для низкомолекулярных амфифильных молекул. Способность амфифильных макромолекул к самоорганизации определяется несколькими факторами.
Закон Бугера-Ламберта-Бера
В основе спектроскопических методов анализа лежат два основных закона. Первый из них – закон Бугера – Ламберта, второй закон – закон Бера. Объединенный закон Бугера-Ламберта-Бера имеет следующую формулировку: поглощение монохроматического света окрашенным раствором прямо пропорционально концентраци ...
Расщепление аминов
Один из наиболее старых методов расщепления аминов заключается в нагревании сухой галоидоводородной соли алкиламина. В строго определенных условиях, зависящих главным образом от характера исследуемого вещества, удается отщепить одну или несколько алкильных групп и тем самым превратить третичный ами ...
Электрохимические методы исследования флавоноидов
Потенциометрическое титрование относится к методу электрохимического анализа, основанному на измерении изменяющегося в процессе титрования электрохимического потенциала электрода, погруженного в изучаемый раствор. Количественное определение флавоноидов в среде неводных растворителей, например, ацет ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.