К настоящему времени не создан единый вариант метода препаративной ВЭЖХ, который обладал бы как большой скоростью и эффективностью разделения, так и высокой производительностью и экономичностью. Поэтому предложены варианты метода, значительно различающиеся по размерам и эффективности колонок, по производительности работы, требованиям к оборудованию и затратам на оборудование, сорбенты и растворители. При выборе оптимального варианта препаративной ВЭЖХ для каждой конкретной задачи. Исследователю приходится сталкиваться с рядом трудностей и проблем.
Первой и основной трудностью является высокая стоимость узко сепаративных сорбентов, особенно привитых, с размером частиц от 5 до 20 мкм. Если с этим можно мириться для аналитических колонок диаметром 2–5 мм, то стоимость резко растет при использовании колонок диаметром 10, 20 или 40 мм и может составить соответственно 200, 800 и 3200 рублей (без учета стоимости металлических колонок и работы по их заполнению). Кроме того, такие колонки достаточно непросто заполнять суспензионным способом.
Вторая трудность–создание хроматографов, насосы которых могли бы подавать растворитель при давлениях 5–20 МПа при расходе 5–100 мл/мин, а инжекторы позволяли бы водить без размывания пробы объемом 0,5–10 мл. Для таких насосов необходимы довольно мощные, дорогостоящие и тяжелые электродвигатели, сложные и дорогие уплотнения, клапаны и т.д.
Третья трудность–необходимость расходования больших объемов растворителей высокой чистоты, что приводит к большим затратам труда и времени на их регенерацию и очистку или к большим тратам на их приобретение. Расход растворителя достигает 10 л и более на 1 г препаративно выделенного очищенного продукта.
Наконец, существуют проблемы, связанные с ограниченной растворимостью образца в растворителе, повышенной вязкостью концентрированных растворов, взрыво- и пожароопасностью работы, необходимостью удаления больших объемов растворителей под вакуумом и т.д.
Конечно, все эти трудности возрастают по мере роста масштаба работы и количества вещества, которое нужно препаративно выделить или очистить. Отсюда первое правило: масштаб препаративного разделения должен быть мал настолько, насколько позволяют поставленные задачи.
Многие проблемы, связанные с выделением 1–10 мг чистых веществ для их идентификации современными высокочувствительными физико-химическими методами легко разрешаются на обычных аналитических колонках диаметром 4–5 мм путем многократного ввода проб и сбора фракций. Как правило, для таких работ не требуется никакого специального оборудования, кроме обычного аналитического хроматографа, а сбор фракций осуществляется вручную. Производительность работы можно увеличить без существенного изменения аппаратуры, заменив аналитическую колонку на препаративную диаметром 10–14 мм: как правило, насосы способны подавать до 5–10 мл/мин растворителя, а инжекторы–вводить 0,1–1 мл пробы. Правда, стоимость оборудования увеличивается на стоимость такой колонки, однако и производительность работы возрастет в 4–10 раз. Дальнейшего увеличения количества выделяемого вещества можно добиться уже только при значительном усложнении и удорожании оборудования.
Так, разделить большие количества на аналитическом хроматографе с колонкой диаметром 10–14 мм можно при увеличении продолжительности его работы, чего можно достигнуть путем автоматизации процесса ввода и сбора образца. Для этого хроматограф должен быть оснащен коллектором фракций, автоматическим устройством ввода пробы и компьютером, управляющим их работой. Для некоторых жидкостных насосов предусмотрена возможность установки специальных препаративных головок, иногда с рециклом разделенных фракций, позволяющих использовать эти насосы с колонками диаметром 20–25 мм (при производительности до 20–30 мл/мин) или 35–50 мм (до 100 мл/мин). Соответственно петлевой инжектор должен иметь достаточно широкие внутренние каналы и возможность установки петли размером до 10 мл. Конструкция и геометрия петли должны быть такими, чтобы обеспечивалось минимальное размывание образца при вводе пробы: длинные петли малого диаметра без резких изменений геометрии потока предпочтительней коротких и большого диаметра. Нередко удается заметно улучшить разделение, одновременно уменьшив размывание образца при вводе пробы путем ввода пробы без инжектора, установив вместо него тройник малого Ир объема и вводя пробу вспомогательным насосом высокого ржавления, работающим короткий отрезок времени. Менее удобным способом, дающим сходный результат, является ввод больших проб на колонку шприцем с использованием инжектора с прокалываемой резиновой мембраной, или краном малого объема, однако при этом ввод пробы (из-за ограниченного давления, которое можно создать шприцем даже хорошего качества: около 5 МПа для шприца емкостью 1 мл и около 1 МПа–для шприца емкостью 10 мл) осуществляют при остановке потока (выключении основного насоса).
Использование ультразвукового распыления
Ряд исследователей для получения аэрозоля используют ультразвуковые (УЗ) распылители. Этот процесс может обеспечить образование очень мелких капелек без образования большого перепада давления между жидкостью и газом и без использования распыляющего воздушного потока. Наиболее существенным достоинст ...
Катионитовые фильтры, вспомогательные устройства катионитовых установок
Катионитовые фильтры бывают напорные и открытые. Напорные катионитовые фильтры (горизонтальные, вертикальные) состоят из цилиндрического корпуса, дренажной системы для отвода из фильтров умягченной воды и подачи на него воды для взрыхления катионита, распределительной системы для подачи в фильтр ре ...
Определение кислотно-основных свойств поверхности
Для определения содержания кислотно-основных центров с одновременным установлением их силы, использовался метод неводного титрования этих центров раствором паратолуолсульфокислоты и едкого натра. В качестве растворителя использовался ацетон, являющийся индеферентным растворителем с большой дифферен ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.