Главное квантовое число n определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения начиная с единицы: n= 1, 2, 3, …
Из решения уравнения Шредингера вытекает, что момент импульса (механический орбитальный момент) электрона квантуется, т.е. не может быть произвольным, а принимает дискретные значения, определяемые формулой
Ll=ђ,
где l – орбитальное квантовое число, которое при заданномn принимает значения, l= 0, 1, …, (n – 1), т.е. всего n значений, и определяет момент импульса электрона в атоме.
Из решения уравнений Шредингера следует также, что вектор Ll момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция Llz на направление z внешнего магнитного принимает квантованные значения, кратные ђ:
Llz = ђml,
где ml – магнитное квантовое число, которое при заданномl может принимать значения, ml = 0, ±1, ±2, …, ±l, т.е. всего 2l+1 значений.
Таким образом, магнитное квантовое число mlопределяет проекцию момента импульса электрона на заданное направление, причем вектор момента импульса электрона в атоме может иметь в пространстве 2l+1 ориентаций.
Наличие квантового числа ml должно привести в магнитное поле к расщеплению уровня с главным квантовым числом n на 2l+1 подуровней. Соответственно в спектре атома должно наблюдаться расщепление спектральных линий. Действительно, расщепление энергетических уровней в магнитном поле было обнаружено в 1896 г. голландским физиком П. Зееманом и получило название эффекта Зеемана [10].
Квантовые числа n, l, mlпозволяют более полно описать спектр испускания (поглощения) атома водорода.
В квантовой механике вводятся правила отбора, ограничивающие число возможных переходов электронов в атоме, связанных с испусканием и поглощением света:
1) изменение орбитального квантового числа Δl удовлетворяет условию Δl = ± l;
2) изменение магнитного квантового числа Δmlудовлетворяет условию Δml = 0, ±l.
В оптических спектрах указанные правила отбора в основном выполняются. Учитывая число возможных состояний, соответствующих данномуn, и правило отбора, серии Лаймана соответствуют переходы np → ls (n = 2, 3, …); серии Бальмера – np → 2s, ns → 2p, nd→ 2p (n = 3, 4, …) и т.д.
Переход электрона из основного состояния в возбужденное обусловлен увеличением энергии атома и может происходить только при сообщении атому энергии извне, например, за счет поглощением атомом фотона. Так как поглощающий атом находится обычно в основном состоянии, то спектр атома водорода должен состоять из линий, соответствующих переходам 1s→np (n = 2, 3, …), что находится в полном согласии с опытом[3].
Получение и очистка исходных веществ
В работе был использован поливинилпирролидон с молекулярной массой- марки ч.д.а., использовался без дополнительной очистки. [ - CH2 – CH – ] N O Железо (ΙΙ) сернокислое 7-водное FeSO4*7H2O, чистое, использовалось после высушивания при 120°С. Кобальта (ΙΙ) нитрит 6-водный Co(NO2) ...
Изучение реакции взаимодействия S-метилтио-N-нитрокарбамата с раствором
аммиака
Первый эксперимент велся при эквимольных соотношениях S-метилтио-N-нитрокарбамата и 23,4%-ного раствора аммиака в спиртовом растворе (на 0,25 г S-метилтио-N-нитрокарбамата 18,5 мл этилового спирта). Спустя 2 часа после смешения компонентов УФ-спектры оставались неизменными по длине волны пика и его ...
Возможности нанотехнологий
Практическое воплощение перечисленных далее прогнозов ожидается в период до 2060 г., хотя с 2025 г. возможна и более ранняя реализация отдельных пунктов. Такие оценки выдвигает немалое количество экспертов. Пока их прогнозы продолжают весьма точно сбываться, и не видно причин, способных этим прогно ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.