При газовом анодировании жидкостный электролит, аналогичный по составу промышленным электролитам, помещается в камеру низкого давления (10-2 мм. рт. ст.), в которой поддерживается тлеющий разряд. Схематическое изображение экспериментального оборудования показано на рис.3
Как было впервые продемонстрировано Майлсом и Смитом, металлический образец, подвергнутый анодированию, помещается в область наибольшей проводимости тлеющего разряда и положительно заряжается по отношению к аноду. Этим способом анодируют различные металлы (а именно, алюминий, тантал и сплав тантал – титан). Отношение толщины к напряжению в данном случае выше, чем при обычном анодировании (для тантала эта величина составляет 26 Å/В). Это объясняется повышенной температурой анода в условиях газового разряда. Вообще говоря, газовое анодирование можно с успехом проводить лишь тогда, когда анодируемый металл имеет высокое качество поверхности. Система обладает весьма низким коэффициентом эффективности тока, скорость роста очень мала (внутренние полости анодировать этим методом не возможно). При газовом анодировании очень важно, чтобы анод разрядной цепи был изготовлен из материала, не вступающего в реакцию, в противном случае напряжение системы будет падать на окисле, образующемся на аноде.
Рис. 3 Схема устройства для осуществления процесса газового анодирования
Напыление нейтральными частицами (Рисунок 4.)
(Выбиваемыми из распыляемой мишени ускоренным потоком заряженных ионов, например, Ar+ с энергией 0,1-10 кэВ):
· диодные и триодные (с дополнительным ускоряющим и управляющим электродом) системы;
· магнетроны (устройства, где на скрещенные электрическое и магнитное поле накладываются сверхвысокочастотные (СВЧ) колебания, что приводит к образованию сложных спиралевидных траекторий заряженных частиц, которые имеют возможность разогнаться до высоких энергий);
· ионно-лучевое распыление.
Рисунок 4. Схемы "катодного" и "триодного" напыления пленок нейтральными частицами
а - "диодное" распыление
1 - катод-мишень,
2 - подложка,
3 - подложкодержатель,
4 - анод.
б - распыление "со смещением"
1 - катод-мишень,
2 - подложка,
3 - подложкодержатель,
4 – анод
в - "триодное" распыление,
1 - катод-мишень,
2 - вспомогательный анод,
3 - подложка,
4 - анод-подложкодержатель,
5 - вспомогательный катод
(термоэмитер электронов)
Напыление заряженными частицами
которые разряжаются на подложках в процессе нанесения:
· тлеющий разряд;
· магнетронный разряд;
· дуговой разряд.
Термическое напыление:
· собственно термическое распыление материалов;
· пламенное;
· взрывное;
· световая дуга;
· плазменное.
При термическом напылении энергия осаждающихся частиц в 10-100 раз ниже, чем, например при конденсации заряженных частиц, соответственно значительно меньше и адгезия получаемых покрытий.
Методы CVD по способу активации вещества также могут быть соответственно термическими, плазменными, фотонными, лазерными и пр. К достоинствам двух больших групп вышеназванных газофазных способов относится возможность получения значительных поверхностей равнотолщинных пленок с управляемой толщиной. Текущий контроль толщины покрытий может осуществляться спектрофотометрическим методом, путем измерения частотных характеристик пластин-свидетелей, изменяющихся в зависимости от толщины покрытия, гравиметрически и т.д.
Все методы нанесения пленок характеризуются такими параметрами, как скорость получения покрытий и диапазон достигаемых толщин. Для РVD и CVD это обычно от 1 до 1000 мкм/час и 10-2-10(100) мкм. Для химических методов – 100-1000 мкм/час и 10-1-1000 мкм; взрывных (детонационных) и плазменных методов – до 10-100 мм/час и 0,1-10 мм соответственно.
К подложкам для получения пленок предъявляются требования, которые можно классифицировать как требования по механическим свойствам (чистота обработки, шероховатость; различные виды механической прочности; твердость; коэффициент термического расширения и др.), по химическим свойствам (устойчивость подложек к процессам их чистки перед нанесением пленок; индифферентность по отношению к материалу пленки в ходе её нанесения и эксплуатации или наоборот способность к необходимому для получения заданных свойств композиции химическому взаимодействию с пленкой, т.е. образованию твердых растворов, поверхностных фаз и пр.), по физическим свойствам (температура плавления, рекристаллизации, которые не должны как правило происходить в ходе термообработки пленок), кристаллографическим характеристикам (для получения качественных ориентированных покрытий чаще всего необходимо достаточно близкое совпадение параметров кристаллической решетки подложки и пленки).
Области
применения палладия
Палладий часто применяется как катализатор, в основном в процессе гидрогенизации жиров и крекинге нефти. Хлорид палладия используется как катализатор и для обнаружения микроколичеств угарного газа в воздухе или газовых смесях. Так как водород очень хорошо диффундирует через палладий, палладий приме ...
Использование ультразвукового распыления
Ряд исследователей для получения аэрозоля используют ультразвуковые (УЗ) распылители. Этот процесс может обеспечить образование очень мелких капелек без образования большого перепада давления между жидкостью и газом и без использования распыляющего воздушного потока. Наиболее существенным достоинст ...
Фосфолипазы
Фактически различают несколько фосфолипаз группы А, они являются составной частью многих тканей и секретов живых организмов. Фосфолипазы A1 в большинстве своем - внутриклеточные ферменты, часто мембраносвязанные, не нуждаются в коферменте. Их молекулярные массы варьируют в пределах 15-90 тыс.; опти ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.