Полимерные молекулы в основном являются цепями атомов, соединенных простыми (единичными) связями одинаковой длины ℓ и образующих друг с другом валентный угол и. Тепловое движение составляющих полимерную цепь атомов, проявляющееся во вращении их вокруг направления валентных связей, должно приводить к значительной свернутости цепи. Клубкообразная структура не является единственно возможной для макромолекул. В определенных случаях силы, действующие между соседними атомами цепи, столь велики, что тепловое движение не может привести к изгибанию и скручиванию цепи. При этом макромолекула имеет палочкообразную конформацию. Существенную роль в стабилизации такой конформации играют водородные связи, действующие между несоседними атомами цепи и приводящие к образованию внутримолекулярной структуры. В других случаях макромолекула принимает форму жесткой глобулы, имеющей приблизительно сферическую форму.
Модель идеальной макромолекулы играет в физике полимеров такую же роль, как представление об идеальном газе в обычной молекулярной физике. Эта модель представляет собой цепочку из бестелесных звеньев; каждое из звеньев идеальной цепи соединено с двумя ближайшими по цепи соседями, но не взаимодействует ни с молекулами растворителя, ни с другими звеньями этой же или других макромолекул. Так же как существует много идеальных газов (одноатомный, двухатомный и т.д. – важно лишь, чтобы молекулы не взаимодействовали друг с другом), так есть и целый ряд моделей идеальных цепей; они различаются структурой звеньев и устройством связей между ближайшими соседями, но "идеальность" во всех случаях состоит в отсутствии объемных взаимодействий. Круг реальных условий, при которых молекулы ведут себя как идеальные, не очень широк – в основной это разбавленные растворы полимеров в так называемых θ-растворителях, а также полимерные расплавы. Тем не менее, идеальные модели очень полезны, так как позволяют составить правильное представление о характере теплового движения макромолекул, другими словами – об энтропийных свойствах полимерного вещества.
Для описания конформационных свойств полимерных молекул важное значение имеет модель свободно-сочлененной цепи, введенная в рассмотрение и разработанная Куном и Марком. В этой модели реальная полимерная цепь заменяется эквивалентной, состоящей из Nпрямолинейных сегментов длиной A
, пространственные ориентации которых взаимно независимы. Полная длина эквивалентной цепи L
принимается равной длине полностью вытянутой (без деформации валентных углов) реальной цепи (контурная длина):
(1)
Вторым необходимым условием, которому должна удовлетворять модельная эквивалентная цепь, является совпадение ее начала и конца с началом и концом реальной цепи при любой конформации последней. Таким образом, длина вектора h
, соединяющего концы цепи, имеет одно и то же значение для реальной и модельной цепей. Величина h
служит важнейшей характеристикой конформационных свойств полимерной цепи. Простейшая характеристика пространственного размера полимерной цепи – среднеквадратичной расстояние между ее концами; сравнение размера с контурной длиной характеризует степень свернутости цепи в пространстве.
Гибкость полимерной цепи ведет к тому, что макромолекулы никогда не имеют прямолинейной формы – напротив, любая достаточно длинная цепь, извиваясь, в любой момент имеет форму случайного запутанного клубка. Размер клубка в пространстве не характеризуется контурной длиной цепи, различие этих величин определяется тем, насколько свернута цепь. Именно поэтому необходимо обсуждать вопрос о размерах клубкообразных конформаций цепей. Для характеристики степени гибкости макромолекулы можно наряду с персистентной длиной использовать величину сегмента Куна.
Поскольку ориентации сегментов свободно сочлененной цепи взаимно независимы, они могут являться объектом применения статистического метода.
Развитие статистики полимерных цепей на основе свободно-сочлененной модели привело к установлению важной закономерности – гауссова распределения расстояний hв ансамбле длинных цепных молекул (каждая длиной L
):
(2)
Здесь W(h)dh - вероятность того, что для произвольно выбранной из ансамбля цепи (состоящей из N
сегментов длиной A
Хлор
Хлор, химический элемент VII группы периодической системы, относится к галогенам. Атомный номер 17, относительная атомная масса 35,453. Природный хлор состоит из смеси двух изотопов – хлора-35 (75,77%) и хлора-37 (24,23%). Свойства хлора. Хлор – тяжелый (в 2,5 раза тяжелее воздуха) желто-зеленый га ...
Значение химической промышленности
Химическая промышленность – комплексная отрасль, определяющая, наряду с машиностроением, уровень НТП, обеспечивающая все отрасли народного хозяйства химическими технологиями и материалами, в том числе новыми, прогрессивными и производящая товары массового народного потребления. Химическая промышлен ...
Ориентационная вытяжка волокон
Упрочнение полимеров обычно достигается путем создания в них такой структуры, которая обеспечивает более равномерное распределение внешней нагрузки по макромолекулам. Для гибкоцепных полимерных волокон основным способом упрочнения является ориентационная вытяжка, заключающаяся в растяжении волокон ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.