Новая химия » Высокотемпературная конверсия метана

Высокотемпературная конверсия метана

Страница 2

В последнее время получил промышленное применение процесс высокотемпературной конверсии метана кислородом в гомогенной среде при температурах 1300-1500 С. Этот процесс, протекающий в указанной области температур с большей скоростью, нe требует применения катализатора, а в связи с этим и очистки исходного газа от сернистых соединений. Высокотемпературная конверсия метана кислородом может проводиться как при атмосферном, так и при повышенном давлении.

В связи с этим представляет интерес процесс высокотемпературной конверсии природного газа для производства метанола под давлением 3 9 МПа.

При выполнении расчета с исходным тяжелым газомпроцессы низкотемпературной и высокотемпературной конверсии углеводородовследует рассматривать как один процесс, а углеродный эквивалент исходного газа определять после смешения его с водородом.

Для первой цели известны десятки различных модификацийпроцессов высокотемпературной конверсиии частичного окисления углеводородного сырья (от сжижаемых газов до мазутов и сырой нефти), для второй - 4 процесса низкотемпературной конверсии нефти, 2 процесса гидрогазификации средних дистиллятов и, наконец, процессы газификации сырой нефти и нефтяных остатков.

Образование сажи имеет место при нарушениях режима и нестабильностипроцесса высокотемпературной конверсии, что наблюдается при пуске установки, а также при кратковременных колебаниях концентрации 02 в техническом кислороде, поступающем на конверсию, в сторону понижения. Это вызывает мгновенные резкие отклонения температуры в конверторе на несколько десятков градусов менее среднего значения.

В течение последних лет был разработан и получил промышленное применениепроцесс высокотемпературной конверсии метанас кислородом, осуществляемый в гомогенной среде при температурах 1400-1500С. Достоинством этого способа является высокая скорость реакции, в связи с чем процесс может проводиться в аппаратах весьма небольшого объема. Кроме того, при осуществлении этого способа отпадает надобность в сооружении установок по предварительной очистке газа от сернистых соединений.

Сопоставление показателей каталитической и высокотемпературной конверсии метана коксового газа показало, чтопроцесс высокотемпературной конверсиине требует предварительной очистки коксового газа от сероорганических соединений. При этом отпадает необходимость строительства отделения каталитического разложения органической серы. Однако высокотемпературная конверсия требует повышенного расхода исходного коксового газа и кислорода, а также увеличения капиталовложений по стадии разделения воздуха. В результате расчетов было установлено, что величина текущих затрат по схеме с высокотемпературной конверсией примерно на 5% выше, чем по схеме с каталитической конверсией.

При получении технологического водорода, используемого в производстве синтетического аммиака, в ряде случаев применяетсяпроцесс высокотемпературной конверсии попутного нефтяного газапод давлением и без катализатора. С экономической точки зрения использование такого сырья более целесообразно, чем применение природного газа, поскольку при одинаковой стоимости обоих продуктов, первый из них имеет больший удельный вес и поэтому позволяет получить больший выход водорода. Но переработка попутного газа в условиях высокотемпературной конверсии осложнена вследствие значительного содержания гомологов метана в этом газе и связанного с этим сажеобразования. Более целесообразно решать данную проблему очистки попутного газа от гомологов метана, которые в условиях паровой высокотемпературной конверсии легко разрушаются с образованием углерода.

Очевидно, что взаимодействие метана с кислородом по реакции (VII-23) менее выгодно, чем по реакции (YII-3), так как при этом увеличивается расход кислорода и уменьшается выход на СО на единицу прореагировавшего метана. Перерасход кислорода впроцессе высокотемпературной конверсии метанапо сравнению с каталитической конверсией при 900-1000С частично компенсируется высоким температурным потенциалом продуктов реакции, выходящих из конвертора. Путем впрыскивания конденсата в горячий газ на выходе его из конвертора может быть получена парогазовая смесь с отношением пара к газу, достаточным для последующей конверсии СО.

На нефтеперерабатывающих заводах для получения водорода применяют процесс высокотемпературной (800-850С) паровой каталитической конверсии нефтезаводского газа, содержащего значительные количества высших углеводородов. В зависимости от производительности и режима работы этих установок состав сырья, поступающего на конверсию, может значительно колебаться по содержанию в нем гомологов метана. Это вызывает затруднения при проведениипроцесса высокотемпературной конверсии: опасность отложения углерода на катализаторе, необходимость применения большого избытка водяного пара.

Страницы: 1 2 3

Еще по теме:

Горение полимерных материалов
Горение полимерных материалов представляет собой очень сложный физико-химический процесс, включающий как химические реакции деструкции, сшивания и карбонизации полимера в конденсированной фазе, так и физические процессы интенсивных тепло- и массопередачи. Для характеристики негорючих полимеров и ма ...

Способы получения полимерных композитов на основе алюмосиликатов
Разработаны следующие методы получения композитов на основе органоглин: в процессе синтеза полимера; в расплаве; в растворе; золь-гель процесс [48]. Для получения полимерных композитов на основе органоглин наиболее широко применяются методы получения в расплаве и в процессе синтеза полимера. Получе ...

Выбор и техническая характеристика теплообменных аппаратов
На нефтеперерабатывающих заводах широко используется тепло отходящих с установки горячих продуктов для нагрева исходного сырья, что снижает расход топлива в печах. Машиностроительная промышленность выпускает широкую гамму теплообменной аппаратуры по государственным и отраслевым стандартам, отраслев ...

Идеи алхимии


Идеи алхимии

Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.

Категории

Copyright © 2018 - All Rights Reserved - www.chemitradition.ru
Copyright © 2024 - All Rights Reserved - www.chemitradition.ru