В последнее время получил промышленное применение процесс высокотемпературной конверсии метана кислородом в гомогенной среде при температурах 1300-1500 С. Этот процесс, протекающий в указанной области температур с большей скоростью, нe требует применения катализатора, а в связи с этим и очистки исходного газа от сернистых соединений. Высокотемпературная конверсия метана кислородом может проводиться как при атмосферном, так и при повышенном давлении.
В связи с этим представляет интерес процесс высокотемпературной конверсии природного газа для производства метанола под давлением 3 9 МПа.
При выполнении расчета с исходным тяжелым газомпроцессы низкотемпературной и высокотемпературной конверсии углеводородовследует рассматривать как один процесс, а углеродный эквивалент исходного газа определять после смешения его с водородом.
Для первой цели известны десятки различных модификацийпроцессов высокотемпературной конверсиии частичного окисления углеводородного сырья (от сжижаемых газов до мазутов и сырой нефти), для второй - 4 процесса низкотемпературной конверсии нефти, 2 процесса гидрогазификации средних дистиллятов и, наконец, процессы газификации сырой нефти и нефтяных остатков.
Образование сажи имеет место при нарушениях режима и нестабильностипроцесса высокотемпературной конверсии, что наблюдается при пуске установки, а также при кратковременных колебаниях концентрации 02 в техническом кислороде, поступающем на конверсию, в сторону понижения. Это вызывает мгновенные резкие отклонения температуры в конверторе на несколько десятков градусов менее среднего значения.
В течение последних лет был разработан и получил промышленное применениепроцесс высокотемпературной конверсии метанас кислородом, осуществляемый в гомогенной среде при температурах 1400-1500С. Достоинством этого способа является высокая скорость реакции, в связи с чем процесс может проводиться в аппаратах весьма небольшого объема. Кроме того, при осуществлении этого способа отпадает надобность в сооружении установок по предварительной очистке газа от сернистых соединений.
Сопоставление показателей каталитической и высокотемпературной конверсии метана коксового газа показало, чтопроцесс высокотемпературной конверсиине требует предварительной очистки коксового газа от сероорганических соединений. При этом отпадает необходимость строительства отделения каталитического разложения органической серы. Однако высокотемпературная конверсия требует повышенного расхода исходного коксового газа и кислорода, а также увеличения капиталовложений по стадии разделения воздуха. В результате расчетов было установлено, что величина текущих затрат по схеме с высокотемпературной конверсией примерно на 5% выше, чем по схеме с каталитической конверсией.
При получении технологического водорода, используемого в производстве синтетического аммиака, в ряде случаев применяетсяпроцесс высокотемпературной конверсии попутного нефтяного газапод давлением и без катализатора. С экономической точки зрения использование такого сырья более целесообразно, чем применение природного газа, поскольку при одинаковой стоимости обоих продуктов, первый из них имеет больший удельный вес и поэтому позволяет получить больший выход водорода. Но переработка попутного газа в условиях высокотемпературной конверсии осложнена вследствие значительного содержания гомологов метана в этом газе и связанного с этим сажеобразования. Более целесообразно решать данную проблему очистки попутного газа от гомологов метана, которые в условиях паровой высокотемпературной конверсии легко разрушаются с образованием углерода.
Очевидно, что взаимодействие метана с кислородом по реакции (VII-23) менее выгодно, чем по реакции (YII-3), так как при этом увеличивается расход кислорода и уменьшается выход на СО на единицу прореагировавшего метана. Перерасход кислорода впроцессе высокотемпературной конверсии метанапо сравнению с каталитической конверсией при 900-1000С частично компенсируется высоким температурным потенциалом продуктов реакции, выходящих из конвертора. Путем впрыскивания конденсата в горячий газ на выходе его из конвертора может быть получена парогазовая смесь с отношением пара к газу, достаточным для последующей конверсии СО.
На нефтеперерабатывающих заводах для получения водорода применяют процесс высокотемпературной (800-850С) паровой каталитической конверсии нефтезаводского газа, содержащего значительные количества высших углеводородов. В зависимости от производительности и режима работы этих установок состав сырья, поступающего на конверсию, может значительно колебаться по содержанию в нем гомологов метана. Это вызывает затруднения при проведениипроцесса высокотемпературной конверсии: опасность отложения углерода на катализаторе, необходимость применения большого избытка водяного пара.
Константин Сигизмундович Кирхгоф (1764—1833)
Русский химик. Родился в г. Тетерове (Мекленбург-Шверин, Германия). В 1792—1802 гг. помощник директора, затем директор Главной аптеки в Петербурге. Академик Петербургской АН (с 1812, член-корреспондент с 1807). В области органической химии Кирхгоф сделал в 1811 г. Замечательное открытие: ему впервы ...
Нитросемикарбазид и его соли
Соединение впервые было получено и охарактеризовано в работе [5]. При обработке динитромочевины гидразином при мольном соотношении 1:1-2 после соответствующих превращений был выделен и идентифицирован 4-нитросемикарбазид. Избыток гидразина приводит к гидразиниевой соли 4-нитросемикарбазида: 4-Нитро ...
Распределение вод на земном шаре
Подземные воды глубокого залегания расположены в десятках-сотнях метрах от поверхности земли, они пропитывают пористые горные породы, а также образуют гигантские подземные бассейны, окруженные водонепроницаемыми слоями. Вода в таких подземных резервуарах находится под давлением. Другой тип подземны ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.