Рассчитанные методом Комаря величины молярных коэффициентов светопоглощения комплекса (e620 = 1,52.104 и e675 = 1,72.104) указывают на высокую чувствительность данной фотометрической реакции [34-36]. Метод Комаря, предполагающий знание типа реакции и состава комплекса, установленных независимым путем, был использован нами и для расчета константы равновесия реакции образования комплекса [PdX]+ в водном растворе и его константы устойчивости. Полученные для длины волны 675 нм численные значения констант соответственно 5,0.104 и 6,54.1018 хорошо совпадают с результатами, полученными методом Россотти. Необходимая полнота связывания (99.9%) ионов Pd(II) в комплекс с ПАН достигается уже при соотношении концентраций компонентов 1:1, что находится в соответствии с высокой прочностью координационной сферы ИА и результатами серии насыщения.
Бисазосоединения [6,18,20,21,38,40]. Высокая чувствительность взаимодействия 2,7-бис-азопроизводных хромотроповой кислоты с ионами палладия(II), устойчивость образуемых комплексных соединений и, что также очень важно, хорошая растворимость комплексов в воде при достаточной избирательности реагентов обеспечивают этим реагентам особое место в аналитической химии палладия. Наличие в структуре внутрикомплексного соединения, образуемого ионами палладия(II) с бисазороизводными хромотроповой кислоты, двух шестичленных циклов обеспечивает их устойчивость и большие значения молярных коэффициентов поглощения.
Реакции палладия с 2,7-бисазопроизводными хромотроповой кислоты преимущественно протекают в солянокислых, хлорнокислых и сернокислых средах, причем природа кислоты имеет существенное значение при образовании комплексов. В сернокислых и хлорнокислых растворах взаимодействие палладия с реагентами происходит в интервале от рН 5 до 2 N и даже в более кислой среде (сульфонитрофенол М, а в солянокислых растворах – при рН 2,5-5,0). Молярные коэффициенты палладия с реагентами этой группы очень высоки и составляют 40-60·103.
С использованием сульфонитрофенола М может быть разработана методика прямых дифференциально-фотометрических методов определения палладия [6, 18-22, 38, 39 ]. Выбор этого реагента обусловлен рядом причин: хорошей растворимостью как самого реагента, так и окрашенных соединений палладия, возможностью прямого определения палладия при взаимном присутствии других благородных металлов и ряда сопутствующих примесей, возможностью использования в реакциях с реагентами в качестве исходной формы различных ацидокомплексов палладия (хлоридов, фосфатов, сульфатов, ацетатов). Метод на основе сульфонитрофенола М позволяет определять палладий в интервале концентраций 0,2-150 мкг/мл [22].
Достоинством этого метода является также тот факт, что палладий взаимодействует с сульфонитрофенолом М в кислых и сильнокислых средах (от рН5 до 3 моль/л H2SO4 или H3PO4) (таблица 6) [19]. Он является групповым реагентом, однако благодаря различию в условиях реакций, кинетической активности комплексных соединений и чувствительности достигается избирательность определения палладия в присутствии других элементов платиновой группы (таблица 7) [19].
Таблица 6 Цветные реакции палладия с сульфонитрофенолом М [19]
Исходная форма |
Среда |
e.10-4 |
T, oC |
Время |
Хлорид |
4 М (H3PO4, HNO3, H2SO4) |
8,2 |
50 |
1 ч |
Фосфат |
4 М (H3PO4, HNO3, H2SO4) |
8,2 |
50 |
20 мин |
Нитрат |
4 М (H3PO4, HNO3, H2SO4) |
8,2 |
85 |
20 мин |
Сульфат |
15 М H3PO4 или 7 М H2SO4 |
>10 |
50 |
10 и 30 мин |
Таблица 7 Избирательность реакций палладия с сульфонитрофенолом М [19]
Исходная форма |
Не мешают (кратные количества) |
Хлорид |
Pt, Ru, Ir, Os, Rh, Ag (200) |
Фосфат |
Pt, Rh, Ir, Os, Ru, Ag (200) |
Нитрат |
Pt, Rh, Ir, Os, Ru, Ag (200) |
Сульфат |
Pt, Ir, Os, Ru (10) |
Особенности проектирование объекта
1. Технологическое оборудование, как правило, следует размещать на наружных установках. Производственные здания для размещения технологического оборудования допускается проектировать только в тех случаях, когда это вызывается особенностью технологического процесса или конструктивными требованиями о ...
Порошки
Порошками называются высококонцентрированные дисперсные системы, в которых дисперсной фазой являются твердые частицы, а дисперсионной средой — воздух или другой газ. Условное обозначение: Т/Г
. В порошках частицы дисперсной фазы находятся в контакте друг с другом. Традиционно к порошкам относят бол ...
Крахмал. Строение
крахмала
Крахмал – один из наиболее распространенных запасных полисахаридов растений. Он интенсивно накапливается в результате фотосинтеза и откладывается в семенах, клубнях и других частях растений. Семена и клубни содержат 40-70% крахмала, другие части растений от 4 до 25%. При кислотном гидролизе крахмал ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.