Оксохлорокомплексы рутения(VI) получают при взаимодействии хлора и соляной кислоты (или насыщенных солянокислых растворов RbCl и CsCl) c тетраоксидом рутения. Хлорокомплекс(VI) – [RuO2Cl4]2 – устойчив только в присутствии сильных окислителей и сам обладает окислительными свойствами. Спектрофотометрическим и экстракционным методами показано, что ион [RuO2Cl4]2 – доминирует в интервале концентраций 0.5 – 3 М HCl; ему сопутствует комплекс [RuO2(H2O)2Cl2]. В отсутствии окислителей комплексы Ru(VI) восстанавливаются до соединений Ru(IV) мономерного или полимерного характера в зависимости от концентрации HCl в растворе. При этом чем выше концентрация кислоты, тем быстрее идет процесс восстановления. В водных растворах хлорокомплексы Ru(VI) не устойчивы и диспропорционируют с образованием RuO2 и RuO4
Таким образом, в хлоридных и солянокислых водных растворах наиболее вероятно нахождение рутения в степенях окисления +3 и +4.
Хлоридные комплексы осмия исследованы меньше, чем хлорокомплексы других платиновых металлов. Хлорокомплексы осмия известны в степенях окисления +2, +3, +4, +6, но низкие степени окисления (+2, +3) для осмия менее характерны, чем для рутения.
В кристаллическом состоянии выделены хлорокомплексы осмия(III) – M3[OsCl6]·nH2O, где M – Na+, K+, NH4+, осмия(IV) типа M2[OsCl6], где M – K+, NH4+, Cs+, Ag+, а также биядерные оксохлорокомплексы, аналоги «бурой» соли рутения(IV) – M4[Os2OCl10], где M – K+, Cs+, NH4+. Все биядерные оксокомплексы в твердом состоянии диамагнитны, их строение подтверждено рентгеноструктурными исследованиями. В твердом состоянии выделены оксохлоридные диамагнитные комплексы осмия(VI) состава M2[OsO2Cl4], где M – K+, Cs+, NH4+, содержащие линейную группировку O = Os = O.
Имеются указания, что в спиртовых растворах комплексa [OsCl6]3 – образуется сине-фиолетовое соединение осмия(II) – [OsCl6]4- Комплексный ион [OsCl6]3 – можно получить при длительном нагревании [OsCl6]2- c HCl. В водных растворах хлорокомплексы осмия(III) неустойчивы и разлагаются с выделением гидратированного оксида Os2O3·nH2O. Комплексный ион [OsCl6]3- в разбавленной HCl также гидролизуется, причем равновесие в растворах с COs = 0.01 – 0.05 моль/л при комнатной температуре достигается в течение нескольких недель.
Термодинамические характеристики для хлорокомплексов осмия(III) неизвестны.
Наиболее устойчивыми и относительно хорошо изученными являются хлорокомплексы Os(IV) – [OsCl6]2- Чаще всего эти соединения получают взаимодействием OsO4 с концентрированной соляной кислотой при нагревании, иногда в присутствии восстановителей. Стандартный окислительно-восстановительный потенциал Eo системы [OsCl6]2-/[OsCl6]3 – равен 0.85 В.
В кинетическом отношении [OsCl6]2 – наиболее инертен по сравнению с аналогичными хлорокомплексами других платиновых металлов. Акватация [OsCl6]2 – при комнатной температуре происходит медленно и лигандный обмен незначителен.
Константа скорости акватации (k65) при 80 оС (m = 0.5 – 1.32) составляет 3.3·10-6 с-1, а реакции анации иона [Os(H2O) Cl5] – (k56) в 3.3 – 3.8 М HCl равна 2·10-5 М-1с-1. Константа скорости обмена хлорид-ионов в 8.8 М HCl при 80 – 100 оС составляет величину 3.1·10-6 с-1 Хлорокомплексы осмия(IV) легко разлагаются в растворах под действием света с выделением осадка OsO2·nH2O. Превращения под действием света характерны для комплексов всех платиновых металлов, но в случае комплексов осмия они имеют особенно большую скорость. В растворах [OsCl6]2- в HCl во времени образуются аквохлорокомплексы состава [Os(H2O) Cl5]-, [Os(H2O)2Cl4]o, [Os2O(H2O)2Cl8]2-.
Анионные ПАВ
Полярными группами в анионных ПАВ обычно служат карбоксилатные, сульфатные, сульфонатные и фосфатные группы. На рис. 6 представлены структуры молекул наиболее распространенных ПАВ этого класса. Анионные ПАВ используются в значительно больших объемах, чем ПАВ других типов. По приблизительной оценке ...
Галогениды платиновых
металлов
Галогениды платиновых металлов образуются в процессах галогенирования тонкодисперсных порошков металлов и их солей, а также при прокаливании галогенидов этих металлов в инертной атмосфере или в атмосфере соответствующего галогена. Полученные из водных растворов галогениды содержат воду, при полном ...
Нативность белковой молекулы
НАТИВНОСТЬ - это уникальный комплекс физических, физико-химических, химических и биологических свойств белковой молекулы, который принадлежит ей, когда молекула белка находится в естественном, природном (нативном) состоянии. Например: белок хрусталика глаза - кристаллин - обладает высокой прозрачно ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.