Рис.5. Зависимость ηsp/c - c и ln ηr - c для растворов полиэлектролитов в водном бессолевом растворе для образца № 6.
Точка на оси Y соответствует [h]*=dlnhr/dc при c=0
Скоростную седиментацию изучали на аналитической ультрацентрифуге Beckman XLI при частоте вращения ротора 55 000 об/мин в двухсекторных ячейках с Al вкладышем длиной 12 мм по ходу луча.
Рис.6. Зависимость lnhr – c для водных бессолевых растворов полистиролсульфонатов натрия при 250С.
Седиментационные сканы, полученные при помощи интерференционной оптики, обрабатывали по программе Sedfit [12], которая использует возможность уравнения Ламма [13] разделять расширения седиментационной границы, возникающее из-за неоднородности образца и связанное с процессами диффузии. Уравнение Ламма (59) описывает процесс седиментации монодисперсного вещества в ячейке секториальной формы. Это дифференциальное уравнение имеет следующий вид:
(59)
где с – концентрация растворенного вещества, t – время седиментации, r – радиальное расстояние, измеряемое от оси вращения, w - угловая скорость вращения, s и D, соответственно, коэффициенты седиментации и поступательной диффузии растворенного вещества. Это уравнение не может быть решено аналитически [12]. Программа Sedfit [12, 14] решает это уравнение численно. Ищется такое решение уравнения, которое приводит к максимальному совпадению расчетного и экспериментального профилей седиментационной границы. Численный анализ проводится с применением соответствующих статистических критериев, которые включают минимизацию суммы квадратов невязок между экспериментальными и расчетными кривыми распределения концентрации вещества в ячейке. При этом, необходимо введение в программу значений вязкости (0), плотности (0) растворителя и парциального удельного объема полимера (). Другими необходимыми параметрами являются минимальное smin и максимальное smax значения коэффициентов седиментации, которые наряду с числом разрешения (resolution) N определяют шаг распределения s=(smax-smin)/N. В программе можно использовать по выбору два метода регуляризации (сглаживания): метод максимальной энтропии или метод Тихонова - Филипса. При регуляризации важен выбор доверительного уровня (F-ratio), задаваемого оператором, и который определяет степень сглаживания распределения. Обработка первичных экспериментальных данных, представляющих собой оцифрованные интегральные распределения показателя преломления в седиментационной ячейке, приводит к дифференциальному распределению образца по коэффициентам седиментации (dc(s)/ds), которое в программе обозначено как c(s). Площадь под кривой между значениями s1 и s2 дает концентрацию макромолекул в этом интервале значений s, выраженную в числе интерференционных полос. В результате получают средние значения коэффициента седиментации.
Рис.7. Седиментационный анализ образца № 3 в 0.2M NaCl в программе Sedfit
Рис.8. Седиментационный анализ образца № 4 в 0.2M NaCl в программе Sedfit
Рис. 9. Концентрационная зависимость коэффициента седиментации для образцов №2,3,4 в 0.2М NaCl при 20°С
Рис. 10. Концентрационная зависимость коэффициента седиментации для образцов №2,3,4 в 4.17М NaCl при 20°С
С использованием значений характеристических вязкостей, коэффициентов седиментации в 0.2М NaCl и значения гидродинамического инварианта А0, полученного для образцов полистирол сульфоната в 0.2М NaCl в работе [4], были рассчитаны молекулярные массы Ms по соотношению:
Msh = (R/A0)3/2[s]3/2[h]1/2, (64)
где A0=3.15×10-10 , [s]=h0/(1-ur0), [h] в 100см3/г.
Молекулярные массы рассчитывали также по значениям s0 и ks с использованием седиментационного параметра bs:
Mkss = (NA/bs)3/2[s]3/2ks1/2, (65)
где bs=1.25×107 , [s]=h0/(1-ur0), ks в см3/г.
Гидродинамические характеристики и молекулярные массы приведены в таблице 2.
Таблица 2. Гидродинамические характеристики и молекулярная масса образцов полистиролсульфоната натрия в воде, в 0.2M NaCl и 4.17М NaCl
№ |
M Fluka |
[h] |
[h] |
k’ |
k’’ |
s0 1013 |
ks |
Msh 10-3 |
Mks 10-3 |
[h] |
k’ |
k’’ |
H2O |
0.2M NaCl |
4.17M NaCl | ||||||||||
1 |
2600 |
9300 |
398 |
0.30 |
-0.15 |
16.8 |
600 |
2600 |
2450 |
30 |
1.8 |
0.4 |
2 |
780 |
4100 |
118 |
0.40 |
-0.035 |
9.95 |
260 |
640 |
640 | |||
3 |
350 |
3500 |
117 |
0.32 |
-0.156 |
7.72 |
204 |
430 |
440 |
11.5 |
5.3 |
1.2 |
4 |
77 |
830 |
28.5 |
0.6 |
-0.082 |
4.08 |
70 |
82 |
98 |
4 |
7.5 |
2.2 |
5 |
46 |
56 |
15 |
0.51 |
-0.074 |
3.09 |
40 |
39 |
50 | |||
6 |
13 |
27 |
6 |
2.0 |
-0.62 |
1.89 |
30 |
12 |
21 |
Факторы, влияющие на результаты полярографических измерений
Результаты полярографических измерений иногда искажаются появлением так называемых полярографических максимумов, т.е. резким (в несколько десятков раз) превышением тока на отдельных участках вольтамперных кривых над предельным диффузионным током. Существует ряд причин возникновения этих максимумов. ...
Проточные методы
При исследовании катализаторов наиболее распространены проточные методы измерения каталитической активности. В проточных установках поток реагентов пропускают с определенной скоростью через реакционный объем, содержащий катализатор, производя замеры параметров процесса и анализы состава на входе в ...
Определение пленчатости зерна
Пленчатостью называют количество мякинной оболочки, выраженное в процентах от общей массы зерна. Толщина (количество) мякинной оболочки ячменя, кроме чисто химического влияния на состав полученного сусла и пива, оказывает влияние на рентабельность переработки того или другого сорта ячменя. Чем мень ...
Алхимия - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» производят от арабского алькимия, которое восходит к греческому chemeia, от cheo — лью, отливаю.